3.536 \(\int \frac{c+d x+e x^2+f x^3}{x^2 \left (a+b x^4\right )^{3/2}} \, dx\)

Optimal. Leaf size=344 \[ \frac{\left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (\sqrt{a} e+3 \sqrt{b} c\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 a^{7/4} \sqrt [4]{b} \sqrt{a+b x^4}}-\frac{3 \sqrt [4]{b} c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{7/4} \sqrt{a+b x^4}}-\frac{d \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )}{2 a^{3/2}}+\frac{x \left (a e+a f x-b c x^2-b d x^3\right )}{2 a^2 \sqrt{a+b x^4}}-\frac{c \sqrt{a+b x^4}}{a^2 x}+\frac{3 \sqrt{b} c x \sqrt{a+b x^4}}{2 a^2 \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{d \sqrt{a+b x^4}}{2 a^2} \]

[Out]

(x*(a*e + a*f*x - b*c*x^2 - b*d*x^3))/(2*a^2*Sqrt[a + b*x^4]) + (d*Sqrt[a + b*x^
4])/(2*a^2) - (c*Sqrt[a + b*x^4])/(a^2*x) + (3*Sqrt[b]*c*x*Sqrt[a + b*x^4])/(2*a
^2*(Sqrt[a] + Sqrt[b]*x^2)) - (d*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/(2*a^(3/2)) -
 (3*b^(1/4)*c*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2
]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(2*a^(7/4)*Sqrt[a + b*x^4]) + (
(3*Sqrt[b]*c + Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sq
rt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(7/4)*b^(1/4)*
Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.696423, antiderivative size = 344, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 12, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4 \[ \frac{\left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (\sqrt{a} e+3 \sqrt{b} c\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 a^{7/4} \sqrt [4]{b} \sqrt{a+b x^4}}-\frac{3 \sqrt [4]{b} c \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{7/4} \sqrt{a+b x^4}}-\frac{d \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )}{2 a^{3/2}}+\frac{x \left (a e+a f x-b c x^2-b d x^3\right )}{2 a^2 \sqrt{a+b x^4}}-\frac{c \sqrt{a+b x^4}}{a^2 x}+\frac{3 \sqrt{b} c x \sqrt{a+b x^4}}{2 a^2 \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{d \sqrt{a+b x^4}}{2 a^2} \]

Antiderivative was successfully verified.

[In]  Int[(c + d*x + e*x^2 + f*x^3)/(x^2*(a + b*x^4)^(3/2)),x]

[Out]

(x*(a*e + a*f*x - b*c*x^2 - b*d*x^3))/(2*a^2*Sqrt[a + b*x^4]) + (d*Sqrt[a + b*x^
4])/(2*a^2) - (c*Sqrt[a + b*x^4])/(a^2*x) + (3*Sqrt[b]*c*x*Sqrt[a + b*x^4])/(2*a
^2*(Sqrt[a] + Sqrt[b]*x^2)) - (d*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/(2*a^(3/2)) -
 (3*b^(1/4)*c*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2
]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(2*a^(7/4)*Sqrt[a + b*x^4]) + (
(3*Sqrt[b]*c + Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sq
rt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(7/4)*b^(1/4)*
Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 23.9362, size = 109, normalized size = 0.32 \[ \frac{x \left (\frac{c}{x^{2}} + \frac{d}{x} + e + f x\right )}{2 a \sqrt{a + b x^{4}}} + \frac{e \sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) F\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{4 a^{\frac{5}{4}} \sqrt [4]{b} \sqrt{a + b x^{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((f*x**3+e*x**2+d*x+c)/x**2/(b*x**4+a)**(3/2),x)

[Out]

x*(c/x**2 + d/x + e + f*x)/(2*a*sqrt(a + b*x**4)) + e*sqrt((a + b*x**4)/(sqrt(a)
 + sqrt(b)*x**2)**2)*(sqrt(a) + sqrt(b)*x**2)*elliptic_f(2*atan(b**(1/4)*x/a**(1
/4)), 1/2)/(4*a**(5/4)*b**(1/4)*sqrt(a + b*x**4))

_______________________________________________________________________________________

Mathematica [C]  time = 0.733707, size = 245, normalized size = 0.71 \[ \frac{\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \left (-\sqrt{a} d x \sqrt{a+b x^4} \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )-2 a c+a x (d+x (e+f x))-3 b c x^4\right )-i \sqrt{a} x \sqrt{\frac{b x^4}{a}+1} \left (\sqrt{a} e-3 i \sqrt{b} c\right ) F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )+3 \sqrt{a} \sqrt{b} c x \sqrt{\frac{b x^4}{a}+1} E\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )}{2 a^2 x \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[(c + d*x + e*x^2 + f*x^3)/(x^2*(a + b*x^4)^(3/2)),x]

[Out]

(Sqrt[(I*Sqrt[b])/Sqrt[a]]*(-2*a*c - 3*b*c*x^4 + a*x*(d + x*(e + f*x)) - Sqrt[a]
*d*x*Sqrt[a + b*x^4]*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]]) + 3*Sqrt[a]*Sqrt[b]*c*x*S
qrt[1 + (b*x^4)/a]*EllipticE[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1] - I*Sqr
t[a]*((-3*I)*Sqrt[b]*c + Sqrt[a]*e)*x*Sqrt[1 + (b*x^4)/a]*EllipticF[I*ArcSinh[Sq
rt[(I*Sqrt[b])/Sqrt[a]]*x], -1])/(2*a^2*Sqrt[(I*Sqrt[b])/Sqrt[a]]*x*Sqrt[a + b*x
^4])

_______________________________________________________________________________________

Maple [C]  time = 0.015, size = 355, normalized size = 1. \[{\frac{ex}{2\,a}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{b}} \right ) b}}}}+{\frac{e}{2\,a}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{f{x}^{2}}{2\,a}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{\frac{{x}^{3}bc}{2\,{a}^{2}}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{b}} \right ) b}}}}-{\frac{c}{{a}^{2}x}\sqrt{b{x}^{4}+a}}+{{\frac{3\,i}{2}}c\sqrt{b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){a}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{{\frac{3\,i}{2}}c\sqrt{b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){a}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{d}{2\,a}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{\frac{d}{2}\ln \left ({\frac{1}{{x}^{2}} \left ( 2\,a+2\,\sqrt{a}\sqrt{b{x}^{4}+a} \right ) } \right ){a}^{-{\frac{3}{2}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((f*x^3+e*x^2+d*x+c)/x^2/(b*x^4+a)^(3/2),x)

[Out]

1/2*e/a*x/((x^4+a/b)*b)^(1/2)+1/2*e/a/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(
1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a
^(1/2)*b^(1/2))^(1/2),I)+1/2*f*x^2/a/(b*x^4+a)^(1/2)-1/2*c*b/a^2*x^3/((x^4+a/b)*
b)^(1/2)-c*(b*x^4+a)^(1/2)/a^2/x+3/2*I*c*b^(1/2)/a^(3/2)/(I/a^(1/2)*b^(1/2))^(1/
2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/
2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-3/2*I*c*b^(1/2)/a^(3/2)/(I/a^(1/2)*b
^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b
*x^4+a)^(1/2)*EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+1/2*d/a/(b*x^4+a)^(1/2)-1
/2*d/a^(3/2)*ln((2*a+2*a^(1/2)*(b*x^4+a)^(1/2))/x^2)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{f x^{3} + e x^{2} + d x + c}{{\left (b x^{4} + a\right )}^{\frac{3}{2}} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x^3 + e*x^2 + d*x + c)/((b*x^4 + a)^(3/2)*x^2),x, algorithm="maxima")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)/((b*x^4 + a)^(3/2)*x^2), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{f x^{3} + e x^{2} + d x + c}{{\left (b x^{6} + a x^{2}\right )} \sqrt{b x^{4} + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x^3 + e*x^2 + d*x + c)/((b*x^4 + a)^(3/2)*x^2),x, algorithm="fricas")

[Out]

integral((f*x^3 + e*x^2 + d*x + c)/((b*x^6 + a*x^2)*sqrt(b*x^4 + a)), x)

_______________________________________________________________________________________

Sympy [A]  time = 69.3578, size = 291, normalized size = 0.85 \[ d \left (\frac{2 a^{3} \sqrt{1 + \frac{b x^{4}}{a}}}{4 a^{\frac{9}{2}} + 4 a^{\frac{7}{2}} b x^{4}} + \frac{a^{3} \log{\left (\frac{b x^{4}}{a} \right )}}{4 a^{\frac{9}{2}} + 4 a^{\frac{7}{2}} b x^{4}} - \frac{2 a^{3} \log{\left (\sqrt{1 + \frac{b x^{4}}{a}} + 1 \right )}}{4 a^{\frac{9}{2}} + 4 a^{\frac{7}{2}} b x^{4}} + \frac{a^{2} b x^{4} \log{\left (\frac{b x^{4}}{a} \right )}}{4 a^{\frac{9}{2}} + 4 a^{\frac{7}{2}} b x^{4}} - \frac{2 a^{2} b x^{4} \log{\left (\sqrt{1 + \frac{b x^{4}}{a}} + 1 \right )}}{4 a^{\frac{9}{2}} + 4 a^{\frac{7}{2}} b x^{4}}\right ) + \frac{c \Gamma \left (- \frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{4}, \frac{3}{2} \\ \frac{3}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{2}} x \Gamma \left (\frac{3}{4}\right )} + \frac{e x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{3}{2} \\ \frac{5}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{2}} \Gamma \left (\frac{5}{4}\right )} + \frac{f x^{2}}{2 a^{\frac{3}{2}} \sqrt{1 + \frac{b x^{4}}{a}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x**3+e*x**2+d*x+c)/x**2/(b*x**4+a)**(3/2),x)

[Out]

d*(2*a**3*sqrt(1 + b*x**4/a)/(4*a**(9/2) + 4*a**(7/2)*b*x**4) + a**3*log(b*x**4/
a)/(4*a**(9/2) + 4*a**(7/2)*b*x**4) - 2*a**3*log(sqrt(1 + b*x**4/a) + 1)/(4*a**(
9/2) + 4*a**(7/2)*b*x**4) + a**2*b*x**4*log(b*x**4/a)/(4*a**(9/2) + 4*a**(7/2)*b
*x**4) - 2*a**2*b*x**4*log(sqrt(1 + b*x**4/a) + 1)/(4*a**(9/2) + 4*a**(7/2)*b*x*
*4)) + c*gamma(-1/4)*hyper((-1/4, 3/2), (3/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**
(3/2)*x*gamma(3/4)) + e*x*gamma(1/4)*hyper((1/4, 3/2), (5/4,), b*x**4*exp_polar(
I*pi)/a)/(4*a**(3/2)*gamma(5/4)) + f*x**2/(2*a**(3/2)*sqrt(1 + b*x**4/a))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{f x^{3} + e x^{2} + d x + c}{{\left (b x^{4} + a\right )}^{\frac{3}{2}} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x^3 + e*x^2 + d*x + c)/((b*x^4 + a)^(3/2)*x^2),x, algorithm="giac")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)/((b*x^4 + a)^(3/2)*x^2), x)